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Abstract

In this paper we formulate the general prestressability conditions for tensegrity structures. These conditions are
expressed as a set of nonlinear equations and inequalities on the tendon tensions. Several examples of tensegrity
structures for which the prestressability conditions can be analytically solved are then presented. © 2001 Published by
Elsevier Science Ltd.
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1. Introduction

The word tensegrity is an acronym, a contraction of tensional integrity. Fuller (1975) defines tensegrity as
a “structural relationship principle in which structural shape is guaranteed by the interaction between a
continuous network of members in tension and a set of members in compression”’.

Tensegrity structures are lattices that form finite networks depending on the arrangement of the vertices:
tower-like structures, layered networks or crystalline type networks according to the number of spatial
directions they develop. They consist of a set of soft members (for example elastic tendons), and a set of
hard members (for example bars). A perspective view of a tensegrity structure composed of 24 tendons — the
soft members — and six bars — the hard members — is given in Fig. 1.

Although the origins of tensegrity structures can be pin-pointed to 1927 (Snelson, 1996), the main in-
vestigations have been carried out during the last 40 years, with artistic work as the starting point.
Tensegrity structures were looked upon from an engineering perspective for the first time by Fuller (1975).
Geometrical investigations followed, most of them being reported in Fuller (1975) and Pugh (1976).

Approaches using mechanics have been developed recently and research in tensegrity structures turned
into a more systematic and engineering oriented one, aimed at establishing the theoretical framework for
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Nomenclature

b edge length of the base and top triangles
h overlap

k; stiffness of the jth tendon

/ length of a bar

l; length of the jth tendon

Ly, rest length of the jth tendon

q vector of generalized coordinates

X, ¥ij» z;; Cartesian coordinates of the mass center of the ij bar
A(g)  equilibrium matrix

C force in a bar in a symmetrical prestressable configuration

D length of a diagonal tendon in a symmetrical configuration

E number of tendons

N number of degrees of freedom

P pretension coeflicient

S length of a saddle tendon in a symmetrical configuration

X, Y, Z Cartesian coordinates of the mass center of the top

T vector of tendon tensions

T; tension in the jth tendon

Ty tension in a boundary tendon in a symmetrical prestressable configuration

o tension in a diagonal tendon in a symmetrical prestressable configuration
Ts tension in a saddle tendon in a symmetrical prestressable configuration
Ty tension in a vertical tendon in a symmetrical prestressable configuration
Tr tension in a top tendon in a symmetrical prestressable configuration

V length of a vertical tendon in a symmetrical configuration

w total virtual work

w; virtual work due to the jth tendon

0 declination of a bar in a symmetrical configuration

o azimuth of bar 11 in a symmetrical configuration

o azimuth of bar ij

0 declination of bar i

dq virtual displacement of the vector of generalized coordinates
8/, virtual change in length of the jth tendon

W, ¢, 0 Euler angles of the top reference frame

the analysis and design of these structures. Among the researchers in tensegrity structures, Pellegrino
(1990), Pellegrino and Calladine (1986), Motro (1992), Motro et al. (1986), and Hanaor (1988) have made
important contributions toward further knowledge of the statics of these structures. Linear dynamic
analysis results have been published by Motro (1986) and Furuya (1992). Nonlinear dynamics and control
design studies have been reported by Skelton and Sultan (1997), Sultan (1999) and Sultan and Skelton
(1997).

Industrial projects and proposals are beginning, ranging from tensegrity domes (Hanaor, 1992; Wang
and Liu, 1996) to tensegrity sensors (Sultan and Skelton, 1998), space telescopes (Sultan et al., 1999), or
flight simulators (Sultan et al., 2000). It is interesting to note that, recently, tensegrity structures have been
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Tendon

Fig. 1. A tensegrity structure.

proposed to explain how various types of cells (e.g. nerve cells, smooth muscles, etc.) resist shape distorsion
(Ingber, 1993, 1998). Qualitative and quantitative results using a two stage tensegrity structure to model a
cell’s static properties and which are in agreement with biological experimental results, have been reported
by Stamenovic et al. (1996) and Coughlin and Stamenovic (1997).

In this article we first derive the general prestressability conditions from the principle of virtual work.
Next, certain classes of tensegrity structures are introduced and the prestressability conditions are inves-
tigated. For particular prestressable configurations these conditions are analytically solved.

2. General prestressability conditions

A fundamental question we have to answer when investigating tensegrity structures is as follows: under
what conditions does a tensegrity structure yield an equilibrium configuration with all tendons in tension
when no external forces and no external torques act? This property of tensegrity structures is called pre-
stressability, the corresponding conditions are called prestressability conditions, and the corresponding
equilibrium configurations are called prestressable configurations.

In the following we derive the general prestressability conditions using the principle of virtual work.

2.1. Mathematical modeling assumptions

Consider a tensegrity structure composed of E elastic tendons and R rigid bodies. We assume that all the
joints of the system are affected atmost by kinetic friction. This means that the friction forces/torques acting
at a joint are zero if the relative velocity between the elements in contact is zero and may be nonzero
otherwise. Also, the tendons are affected atmost by kinetic damping. This means that the damping force
introduced by a tendon is zero if the time derivative of its elongation is zero and may be nonzero otherwise.
The system is assumed to be holonomic. All constraints are scleronomic and bilateral; in other words, they
are not time dependent and they are not mathematically expressed as inequalities. The constraint forces are
workless, which means that they do no work through a virtual displacement satisfying the geometric
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constraints. We neglect the forces exerted upon the structure by external force fields (for example, a
gravitational field).

2.2. Derivation of the prestressability conditions

In order to derive the general prestressability conditions we apply the principle of virtual work: “4
necessary and sufficient condition for the static equilibrium of an initially motionless, scleronomic system which
is subjected to workless bilateral constraints is that zero virtual work is done by the applied forces in moving
through an arbitrary, reversible, virtual displacement satisfying the constraints”.

Assume that no external applied forces and torques act and that the structure is in equilibrium in a
prestressable configuration. Let 8q = [6q; dg, - - SqN]T, represent a virtual displacement of the vector of
independent generalized coordinates, ¢ = [q1 ¢2 ... qN]T, from its value at a prestressable configuration.
Here N is the number of degrees of freedom of the system. Let us examine the virtual work of the applied
forces acting on the structure.

Since the damping and friction forces and torques acting on the system are kinetic, these forces and
torques are zero when the system is in equilibrium, hence they do no work in a virtual displacement. The
only forces which do virtual work are the tensions in the tendons.

Due to the virtual displacement, the jth tendon experiences a virtual change in length of

V.0l
3, = —3g;. (1)
! i=1 9g;

Here /; is the length of the jth tendon. Throughout the virtual displacement, the tension in tendon j is
constant, equal to its equilibrium value, 7;. The corresponding virtual work is

W, = T;81;. (2)

Assuming E tendons, the total virtual work is given by

W—ZE:W— T-ZN:%S «—ZN:S «i%T—S TA(q)T (3)
_.1 J l'/-laqi qf—.l%.laqi/—q q 9
Jj= i= i= Jj=

where T is the vector of tendon tensions and the elements of the matrix 4(g), called the equilibrium matrix,
are given by

E

Jj=

Ay S—Z, i=1,....,N, j=1,...E. (4)
Since the virtual work must be zero for every virtual displacement 8¢, we must have

A(q)T =0, (5)
At a prestresable configuration all tendons must be strictly in tension. Hence, the equilibrium equation. (5)
must have positive solutions for 7}, j = 1,...,E. The prestressability conditions are

A(q)T=0 and 7;>0 forj=1,...,E. (6)

A necessary condition for T to have positive elements is that the kernel of 4(g) is nonzero. In terms of
A(q) this condition gives rise to the following:

det(d(q)) =0 ifN=E, (7)

det(AT(q)A(g)) =0 if N > E. (8)
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If N < E the kernel of 4(g) is guaranteed to be nonzero.

Solving the general prestressability conditions is difficult. Previous research reported by Pellegrino
(1990), Pellegrino and Calladine (1986), Motro et al. (1986), Hanaor (1988) has focused on numerical
solutions. Kenner (1976) and Tarnai (1980) took an analytical approach to the prestressability problem.
Tarnai (1980) presented some structures for which the determinant of the equilibrium matrix, 4(g), is zero
for certain geometries — thus potentially leading to prestressable configurations — but did not investigate
the forces in the structural members. In the following we present several tensegrity structures for which the
prestressability conditions can be analytically solved for certain configurations. For these configurations the
forces in the structural members are also given.

3. Two stage SVD tensegrity structures

The first example of a class of tensegrity structures for which the prestressability conditions can be
analytically solved for certain prestressable configurations, is the class of two stage SVD tensegrity
structures.

A perspective view of a two stage SVD tensegrity structure is given in Fig. 2. Its components are: a base,
denoted by 4,145,453, a top, denoted by Bj»B» B3, three bars attached to the base through ball and socket
joints (Ay1B11,421Ba1,431B31), three bars attached to the top through ball and socket joints (41,82,
A»nBxn,ABs), and 18 tendons connecting the end points of the bars. The acronym SVD comes from the
notation we introduce for the tendons: tendons B;;4, will be called saddle tendons, 4,1B;; and A ,B,, vertical
tendons, and 4,4, and B; By, diagonal tendons, respectively. Points 4;; and B;;, i = 1,2,3, j = 1,2, will be
called nodal points. For future reference a bar will be referred to by the indices of its end points (for example
bar 4By, will be the 11 bar). Stage j, where j can be equal to 1 or 2, is composed of bars ij, i = 1,2,3. We
also label the tendons as follows:

1 =A41143, 2=A41B3, 3=A4n41n, 4=A4Bn, 5=A434n, 6=A43By, 7T=A412By,
8=ApBi, 9=A4»B3y, 10=A4»B85, 11 =A4nBu, 12=A4nB3, 13 =438,
14 = BBy, 15=A413Byp, 16=DByB5, 17=A4»nBy», 18 =B38;,.

This labeling is necessary for our formulation of the prestressability conditions: for example /; is the length
of tendon j and T; is the tension in tendon j.

o>

Fig. 2. Two stage SVD tensegrity structure.
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The assumptions made for mathematical modeling are: the base and the top are rigid bodies, the bars are
rigid, axially symmetric, and for each bar the rotational degree of freedom around the longitudinal axis of
symmetry is neglected. This is a reasonable assumption if the points of attachment of the bars to the rigid
bodies and to the tendons belong to the axes of symmetry of the bars, so that no longitudinal moment is
generated, or, if we assume that the thickness of the bars is negligible. We assume that the friction forces/
torques at the joints and the damping forces in the tendons are kinetic. We neglect the forces exerted upon
the structure by external force fields (e.g. gravitational field).

3.1. Coordinate systems and generalized coordinates

The inertial reference frame, by, by, bs, is an orthonormal dextral set of vectors, whose origin coincides
with the geometric center of the base triangle A4;4,43;. Axis 133 is orthogonal to 44,43, pointing up-
ward, while by is parallel to 4,45, pointing toward A3;. We introduce another dextral orthonormal ref-
erence frame, #,, &, #3, called the top reference frame, which is fixed in the top rigid body. Its origin, Oy,
coincides with the geometric center of the triangle Bj,B»Bx,, #; is orthogonal to B»B» B3, and points up-
ward, while #; is parallel to Bj»B3, and points toward Bs,.

The 18 independent generalized coordinates, necessary to describe the configuration of the system are
listed below:

e The attitude of the top is described by the Euler angles for a 3—1-2 sequence (referred to as Y, ¢, 0); they
characterize the rotation of the top reference frame with respect to the inertial reference frame. The in-
ertial Cartesian coordinates, X, Y, Z, of O, describe the translation of the top.

e Foreachbarij,i=1,2,3,j= 1,2, two angles are necessary to define the inertial orientation of its axis of
symmetry: the declination (5@21&)1 the azimuth (o;;), measured with respect to by, 152, bs (see Fig. 2); o, is
the angle made by the vector 4;;8;; with b and «;; is the angle made by the projection of this vector onto
plane (by, by) with b.

The vector of generalized coordinates is

g =1[011 oy 021 o1 O3y 31 012 Opp Om Op O3 A Y p O X Y Z]T~ 9)

3.2. Prestressability conditions

The assumptions made for the mathematical modeling of two stage SVD tensegrity structures are
particular cases of the general modeling assumptions made for the derivation of the general prestressability
conditions. Thus these conditions apply here.

The inertial Cartesian coordinates of the nodal points can be easily expressed in terms of the generalized
coordinates, allowing for the symbolic computation (using for example Maple) of the tendons length /;(g),
j=1,...,18 (see Sultan (1999) for more details).

In the case of a two stage SVD tensegrity structure the number of tendons is equal to the number of
independent generalized coordinates: £ = N = 18. The prestressability conditions are

A(g)T=0 and T,>0 for j=1,...,18, (10)

where the matrix 4(q) is 18 x 18, its elements being given by 4,; =0/;/0q;, i=1,...,18, j=1,...,18.
Symbolic computational software (Maple) has been used for the derivation of 4;; (see Sultan (1999) for
details). Since A(g) is a square matrix, a necessary condition for prestressability is

det (4(q)) = 0. (11)
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Once a solution of this equation has been found for ¢, further investigations must be carried out to de-
termine if (or under what conditions) 7; >0, j=1,...,18.

3.3. Symmetrical prestressable configurations

In the following we introduce additional geometry specifications in order to define a class of prestres-
sable configurations of interest of two stage SVD tensegrity structures.

We assume that all bars have equal lengths, /, and triangles 414,43, and B,B», B3, are equal equilateral
triangles of edge length ». We define a symmetrical configuration as a configuration having the following
properties: all bars have the same declination, J, the vertical projections of points 4, B;, i = 1,2,3, onto
the base make a regular hexagon, and planes 414,143, and B,By» B3, are parallel. The geometry of sym-
metrical configurations can be parameterized by three quantities: «, the azimuth of bar 11, ¢, and /4, the
overlap. The overlap is defined as the distance between planes By B, B3 and A4,42,43, and it is considered
positive if the distance between BB, B;; and 41,443, is greater than the distance between 454,43, and
A114AnAs1. The generalized coordinates corresponding to a symmetrical configuration are given by the
following expressions:

V=—, 0=¢=X=Y=0, Z=2lcos(d)—h,

B B B B i B B 27 (12)
o =0p =0, Oy =03 =0+—7, o3 =0p=0+—7,

3 3
5”:5, l:1,2,3, ]:172
Top and frontal views of a two stage SVD tensegrity structure with this geometry are given in Fig. 3.

Simple geometrical considerations show that in such a configuration, all of the saddle, vertical, and
diagonal tendons have the same lengths,

b? .5 2 . x
S = \/h2+§+l2 sin ((ﬂ*ﬁlbsm@) cos (o — ), (13)
V= \/b2+12—21b sin (9) sin(oHr%), (14)
D= .ln +b_2+ 2 — ilb sin () sin (o) — 27k cos (0) (15)
3 V3 ’

respectively (see Sultan (1999) for details). Here S represents the length of a saddle tendon, V represents the
length of a vertical tendon, and D represents the length of a diagonal tendon.

Prestressable equilibria satisfying the above geometrical specifications will be called symmetrical pres-
tressable configurations.

We next define the range of « and 6. We remark that for o = £ a symmetrical configuration cannot exist
because the axes of symmetry of bars 11, 21, 31 intersect. Thus « € {[0,2n) — Z}. It is easy to see that, from
mechanical equilibrium considerations, for 6 =0 (or J§ = n) the structure cannot be in a symmetrical
prestressable configuration. Also, for 6 =7 a symmetrical prestressable configuration is not physically
feasible because, from mechanical equilibrium considerations, planes 4;,4,43; and B1,B» B3, should co-
incide, a situation we do not consider here. Thus we restrict é by

0<5<g. (16)
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Top View

Fig. 3. Symmetrical configuration.

The necessary prestressability condition for symmetrical prestressable configurations has been derived by
substituting Eq. (12) in Eq. (11) using Maple. The resulting equation,

det (A(x,0,h)) =0, (17)
and the prestressability conditions,
A, 0, )T =0, T;>0 for j=1,...,18, (18)

have been numerically investigated using Matlab as follows: for fixed /, b, «, and J, a solution of Eq. (17) for
h has been sought. Once such a solution has been found, equation A(a, d,4#)T = 0 has been solved for T.
Numerous numerical experiments have indicated that there is atmost one solution of Eq. (17) for & with
T, >0, j=1,...,18, and that at such a solution the tensions in the saddle, vertical, and diagonal tendons
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are, respectively, equal (see Sultan (1999) for details). These numerical results suggest that we impose the
condition that the tensions in the saddle, vertical, and diagonal tendons are equal to 75, Ty, and Tp, re-
spectively, so that the structure of the vector T is

T=[Tp TvTp TvTop Ty Ts Ts Ts Ts Ts Ts Ty Tp Ty Tp Ty Tp)". (19)

In other words, within the class of symmetrical prestressable configurations, we search for those configu-
rations for which the tensions in the saddle, vertical, and diagonal tendons are, respectively, equal.
Substitution of Egs. (12) and (19) into the prestressability conditions (10) leads to

ArTrZO, Ts>0, Tv>0, TD>O, (20)

where the matrix 4, is 18 x 3 and T, = [Ts Ty TD]T. Symbolic computational software (Maple) has been
used to derive Eq. (20). By inspection of 4, we have ascertained that only three rows of A4, can be inde-
pendent: 1, 2, and 18 (see Sultan (1999) for details on A4,). The corresponding prestressability equations and
the inequalities on the tensions yield

AT, =0, Ts>0, Ty>0, Tp>0. (21)
Here
b sin (o&%) _ b cos (x+%) b cos(a)
V3s v V3D
Ae = | Isin(20) b cos (9) cos (1—%) . b cos (9) sin (C“F%) V/3h sin (8)—b sin (2) cos (5) . (22)
25 V3s v V3D
I 0 h=1 cos (9)
N D

We now give an important result of this paper.

Theorem 1. For a given o« € {[0,2n) — £} and a given 6 € (0,5), the two stage SVD tensegrity structure might
yield atmost one symmetrical prestressable configuration for which the tensions in the saddle, vertical, and
diagonal tendons are respectively equal. Necessary and sufficient conditions for such a configuration to occur
are given by

s s TC
g<oc<§, 0<5<§,

31sin(0)

Isin (0)]cos (o +Z)| < b

b .
—— and sin(a+3%) <
2V3 (x+3)
The value of the corresponding overlap at such a configuration is given by

cos (0) » 2.2 b . ﬂ
h— 2 (lu—‘r\/ 3 37%u \/g) lfOf?é3, (24)

[ cos (9) . _=n
3 if ¢=73,

where

u = sin () cos (o + ). (25)
In addition, the tensions in the tendons are given by Eq. (19) with

T,=[l v Tp]' = Ph, (26)

where P is an arbitrary positive scalar called the pretension coefficient and T is given by
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TC T3 TY]
17 = [T, Toy Toy] = =5 v T 7 27
oI I S i T 1 7
where
14 1 lcos(9) . _on) _ ‘ T . n
T, = D\/gcos(m%)(( 7 1) sin (o — %) cos(oc))TD if «#%, 28)
v . . .
> (3 sin (9) — 1) if «=1%,
S [ Lcos(9) T n
Ty = D( I I)TD if o #3, (29)
T if 2 =1,

5 =1. (30)
Proof. See Appendix A. O

We note that numerous numerical experiments indicated that these prestressable configurations are
stable. This conclusion was reached by investigating the linearized dynamical models around these par-
ticular equilibrium solutions. The stiffness matrix of each of the linearized models was positive definite (see
Sultan (1999) for details).

Assuming that the tendons are linear elastic, the tendon rest lengths which are necessary to assure a
desired symmetrical prestressable configuration (characterized by o and J) for which the tensions in the
saddle, vertical, and diagonal tendons are respectively equal, and a prescribed pretension, P, can be derived
as follows. The tendons are linear elastic, thus

.18, (31)

Here T}, kj, ;, Iy, denote the tension, stiffness, length, and rest length of the jth tendon respectively. If we
take into account that 7' = PT; and solve for the rest lengths we get

kil;

= =1,...,18. 2
TO/-P+kj7 J ’ ’ 8 (3)

0;

Equilibrium conditions of the nodal points 4,, or B;1, j = 1,2, 3, provide the forces in the bars. These are
all axial forces, are equal, and depend linearly on P; they are given by

C = C,P, (33)
where
Co = 6Dhs£)]()§—oc) <2\/§hb sin (8) — \/7§ Ibsin (28) + 6h* cos (9) sin (oc - g)
—6lh <cos2(5) sin (oc - g) - % sin (oc + g)) + 2V/31%cos (8) cos ()
+ 612 cos*(8) sin (oc - g)) if o # g (34)

and
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Ty, (30 . N .. =m
C()—?(ESII](é)—E) lfo(—g. (35)

A positive Cy means that the bars are compressed.

3.4. Two stage SD tensegrity structures

Another class of tensegrity structures for which the prestressability conditions can be analytically solved
for certain prestressable configurations, is that of two stage SD tensegrity structures. This can be easily
proved from the two stage SVD tensegrity structures analysis presented before.

A two stage SD tensegrity structure can be obtained from a two stage SVD structure by eliminating the
vertical tendons. We ascertain from the SVD tensegrity structures analysis that, in a two stage SVD
tensegrity structure yielding symmetrical prestressable configurations for which the saddle and diagonal
tendon tensions are respectively equal, the tensions in the vertical tendons can be zero if

. 37sin (9

sin (¢ + %) = T() (36)
Hence we conclude that a two stage SD tensegrity structure can yield symmetrical prestressable configu-
rations for which the saddle and diagonal tendon tensions are respectively equal and that some of these
prestressable configurations are limit cases of the symmetrical prestressable configurations of two stage
SVD tensegrity structures for which the saddle, vertical, and diagonal tendon tensions are respectively
equal.

It can also be proved that actually all of the prestressable configurations of two stage SD tensegrity
structures for which the tensions in the diagonal and saddle tendons are respectively equal are limit cases of
the SVD ones. The proof is summarized in the following (a detailed proof can be found in Sultan (1999)).

Let 75 denote the tension in all saddle tendons and 7, denote the tension in all diagonal tendons. Going
through the same procedure as in the SVD case, we obtain the prestressability conditions in the form

[Al A3]TSD =0, Ts>0, Tp >0, (37)

A, and 45 being the first and third columns of 4. and Tsp = [T TD]T. For nonzero solutions 4; and 4; must
be linearly dependent, a condition which leads to Eq. (36) and

_cos(a+§)\/ N 7_005(0(-&-%)
h= Soon (3 912 — 4b2 cos (a 3)_ licos(u—g)cos(é)' (38)

Eq. (36) is equivalent, as expected, with the condition 7y = 0 deduced for the symmetrical prestressable
configurations for which the saddle, vertical, and diagonal tendon tensions are respectively equal of two
stage SVD tensegrity structures. Furthermore, Eq. (38) can be obtained as a particular case of Eq. (24) if we
substitute Eq. (36) in the solution for the overlap for the SVD type.

The constraint on the overlap (0 < 4 < / cos(d)) holds for these prestressable configurations of the SD
tensegrity type by the same argument as for the SVD type. Constraints 0 < 4 < / cos (), 0 < ¢ <3, and Eq.
(36) lead to the following necessary and sufficient conditions for a symmetrical prestressable configuration
for which the tensions in the saddle and diagonal tendons are respectively equal, to exist:

T T 2b . i
c<*<3 and ﬁsm(o&—i—g)<1. (39)

For each o verifying Eq. (39), the corresponding / is given by Eq. (38), while ¢ is given by Eq. (36).
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The formulas describing the forces in the tendons and bars can be obtained from the ones corresponding
to two stage SVD tensegrity structures by enforcing the condition that the tension in the vertical tendons is
0 (which is equivalent to Eq. (36)).

3.5. Prestressable equilibrium surface

For a two stage SVD tensegrity structure yielding symmetrical prestressable configurations for which the
saddle, vertical, and diagonal tendon tensions are respectively equal, the set of all 4, o, § must satisfy Egs.
(23) and (24). In the three dimensional space of «, J, & this set represents a surface which we call the
prestressable equilibrium surface. A particular subset of this set, corresponding to all nodal points lying on
the surface of a cylinder, is defined by the cylindrical constraint:

B 2bsin (a0 + %)
Y/

Another particular subset, corresponding to all nodal points lying on the surface of a sphere, is defined
by the spherical constraint:

sin (0 (40)

_ V/3lcos(28) + 2b sin () cos (o — %)

! V/3cos(0)

(41)

Figs. 4 and 5 show the prestressable equilibrium surface, obtained for the following geometrical pa-
rameters:

1=04m, b=027m. (42)

The state of stress of a two stage SVD tensegrity structure yielding symmetrical prestressable configu-
rations for which the saddle, vertical, and diagonal tendon tensions are respectively equal, is characterized
by the forces in its members. Figs. 6-9 represent the contour plots of the basis compression (Cp) and
tensions (7q, To, , o, ) respectively. The numbers on the level curves of these plots represent the values of the
quantity whose variation with o and ¢ is represented (Co, Ty, To,, and Tp, respectively).

Sphere

0.4

0.3

0.2

h (m)

0.1
Cylinder

100

Fig. 4. Prestressable equilibrium surface in «, d, & space.
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Fig. 5. Prestressable equilibrium surface projection onto «, ¢ plane.
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Fig. 6. Compressive force (Cy) variation.

4. Two stage SVDB tensegrity structures

5235

The next example of a class of tensegrity structures for which the prestressability conditions can be
analytically solved for certain prestressable configurations, is that of two stage SVDB tensegrity structures.
A two stage SVDB tensegrity structure can be obtained from a two stage SVD structure if we replace
the top and bottom rigid bodies with tendons connecting the nodal points 41, Ay, 431, and Byy, By, B3y,
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respectively. Thus a two stage SVDB tensegrity structure is composed of six bars and 24 tendons (see Fig.
1). We shall use the same notation as for the two stage SVD type (e.g. tendons B; 4, will be called saddle
tendons, 4;,B; and 4,,B,, vertical tendons, and 4,4, and B; B, diagonal tendons); the tendons which
replace the tOp and bottom rlgld bodies — A11A21, A21A31, A31A11, BIZBZZ, 322332, B32312 — will be called
boundary tendons. For prestressability conditions derivation we label the tendons as follows:
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|l =ApAdy, 2=A4243, 3=A4n4n, 4=A4udn, 5=A4uBs, 6=Andpn, 7=A4xBiy,
8 =A31dn, 9=A3Bn, 10=A41By, 11=A41B1, 12=A4»B3, 13 =A4nBy,

14 =438y, 15=A43B3, 16 =A43»By, 17=B;Bn, 18=413By», 19 =ByBxn,

20 = AB3;, 21 = B3B3, 22 =B3Bpn, 23 =BpByn, 24 =BnBip.

We also make the same modeling assumptions as for two stage SVD tensegrity structures.

The independent generalized coordinates used to describe the configuration of this system with respect to
an inertial, dextral, orthonormal reference frame, by, b,, bs, are the Cartesian coordinates, Xij, Vij» Zij» Of the
mass center of bar ij, i = 1,2, 3, j = 1, 2, with respect to the inertial reference frame, and the azimuth o;; and
the declination d;;, which characterize the orientation of bar ij with respect to the inertial frame (these
angles are defined in the same way as the declination and azimuth used for a two stage SVD structure). The
number of independent generalized coordinates is N = 30 and the vector of generalized coordinates is:

q= [Xn Y zZn On oy Xy Y21 221 Oy1 Oa1 X3 Y31 Z31 031 031 X2 Yi2 Zi2 012 oy X2 Y22 Z22 02 O X3 Y32 Z3 03 Ofsz]T-

(43)
4.1. Symmetrical prestressable configurations

The Cartesian coordinates of the nodal points with respect to the inertial reference frame can be easily
expressed in terms of the generalized coordinates. Using these coordinates the lengths of the tendons, /;(g),
Jj=1,...,24, and the elements of the matrix 4(q), 4; = 0/;/0¢q;, i =1,...,30, j=1,...,24, can be derived
using symbolic computation (Maple) (see Sultan (1999) for details).

For two stage SVDB tensegrity structures, the prestressability conditions become

A(@)T=0 and T;,>0 forj=1,...,24 (44)

where 4(g) is a 30 x 24 matrix. In this case the equilibrium matrix 4(g) is not square, the number of
generalized coordinates (N = 30) being greater than the number of tendons (E = 24). Thus a necessary
condition for prestressability is det(4T(g)4(q)) = 0.
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As for two stage SVD tensegrity structures, we shall consider the symmetrical prestressable configura-
tions class. Recall that the symmetrical configurations class has the following properties: all bars have equal
lengths (/), triangles 44,1431 and B|,B2 B3, are equal, parallel, equilateral triangles of side b, all bars have
the same declination, d, the vertical projections of points 4, B;1, i = 1,2, 3, onto the plane A,,4,,43; make a
regular hexagon. This geometry can be parameterized in terms of «, the azimuth of bar 11, J, and A, the
overlap (the distance between planes A4,42,43, and BBy B3, considered positive if 41,4243, is closer to
Ay1A31 A3 than BBy B;;). Consider that the inertial reference frame, by, by, bs, is an orthonormal dextral set
of vectors, which at equilibrium is located at the geometric center of the triangle 4,145,145 and that by is
orthogonal to A;;4,143; pointing upward, while by is parallel to A,;43; pointing toward As;. Then the
corresponding generalized coordinates have the following values:

I . I . . b
= sin (8) cos («) -3 =3 sin (8) sin () V- [cos(d) — h, oy = o,
! in () cos (0z1) _2 +l in () sin (o) = lcos(0) —h = —1—47I
x21—2s cos (1), yzl—\/§ 2S sin (1), Z31 = [Cos ) 0] = & 3
_é_i_isin(&)cos(oc ) —isin(é) sin (o )—L = lcos(d) —h
X31 = 77> 31)s Y1 = 3 31 23 31 = )
2n ! . YES . b
031 :oc+?, X2 =y s1n(5)cos(oc)+Tlsm(5) s1n(oc)—§,
b V3 . ! . : 3 2n
yu:ﬁ—Tlsm(é)cos(a)+Zsm(5) sin (o), zlzzzlcos(é)—h,an:cx—k?,
—é—lsin(é)cos( ) _i_lsin(é)sm( ) —élcos(é)—h =
x22*2 > %), y22*2\/§ 5 ), 222*2 ’ %22 = O,
/ 3
X =g sin (J) cos (o) — %lsin(é) sin (o),
Y = ‘—l‘ sin (0) sin (o) —&—\/Tgl sin (0) cos (o) — %,
3 - 4 . .
232:51005(8))7}1, 0632:0(4‘?, 5ij:57 1:172737 J:1a2

(45)

At a symmetrical configuration all saddle, vertical, and diagonal tendons have the same lengths, re-
spectively, given by the same formulas (13)—(15) as for the SVD type. The boundary tendons have the same
length, b.

As for the SVD case, in a symmetrical prestressable configuration, « and J are restricted to
« € {[0,2n) — £} and o € (0,%).

The corresponding prestressability conditions, A(«,0,#)T =0, T; >0, j = 1,...,24, have been numeri-
cally investigated as follows. For fixed [, b, o, and ¢ the necessary prestressability condition,
det (4(a,8,h)" 4(a, 8, h)) = 0, has been solved for / and the kernel of the corresponding equilibrium matrix
has been computed by solving A(a,d,h)T = 0 for 7. We ascertained that the prestressability conditions
have at most one solution for / such that 7; > 0 for j = 1,...,24, and that, in this case, the tensions in the
saddle, vertical, diagonal, and boundary tendons are respectively equal. Thus we impose the condition that
the tensions in the saddle, vertical, diagonal, and boundary tendons are respectively equal to Tg, Ty, Tp, and
Ty such that the vector of tensions has the following structure:

T=T T In Ton v Ipo vTp Tv Is Is Is Is Ts Is Tv Tpo Tv Tp Tv Tp Tp Tp TB]T. (46)
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If we substitute Eqgs. (45) and (46) into Eq. (44) we obtain the reduced prestressability conditions
ArTrZO7 Ts>07 Tv>0, TD>O7 Ts >O7 (47)

where 4, is a 30 x 4 matrix, and 7; = [Ts Ty Tp TB]T.
Further investigations showed that the only rows of 4, which might be independent are 1, 2, 3, and 4 (see
Sultan (1999) for details). The prestressability conditions corresponding to these rows of 4, yield

AT, = O, Ts > 07 Ty > 0, o > 07 1z > 0, (48)

where the structure of 4. is

* * * *
* * * *
=10« 0 (49)
* * * *
with the nonzero elements of 4. given by
1 . 1 . i
Aoy, = 3 (21 sin (6) cos () — b), A, = 7 (2\/§l sin (d) cos (oc - 8) - 3b),
1 ) v 1 . . b
Aoy = D (21 sin (9) cos (oc - §> - b), A, = -3, Aoy = 5 (21 sin (0) sin (a) — ﬁ)’
V3 . . T 1 . . T b
A, = 5 (21 sin (9) sin (oc - €> —b), Apz = 5 <2lsm(5) sin (oc - 5) - ﬁ) ,
4 4
Ay, = —V3, Aoy = —h, Auys = — (h — Icos(3)), (50)
S D
1, . b . b .
A, = S (I'sin(d)cos(0) — 7 cos(0) sin (oz + §) — 2hsin(0)),
_cos(9) 7 3. ~cos(9) m 3 .
Aoy, = 7% (b cos(a+§)—§lsm(5)), Aoy = D bcos(a+§)+§lsm(5) ,

Ae,, = V3cos(d) cos (oc - %)
We now give another important result of this paper.
Theorem 2. For o € {[0,2n) — £} and 6 € (0,5) the set of symmetrical prestressable configurations of two stage
SVDB tensegrity structures for which the tensions in the saddle, vertical, diagonal, and boundary tendons are

respectively equal is identical with the set of symmetrical prestressable configurations of two stage SVD
tensegrity structures for which the tensions in the saddle, vertical, and diagonal tendons are respectively equal.

Proof. See Appendix B. O

Finally we note that the forces acting on the bars are all equal and their expression, in terms of o, J, and
P, is given by Egs. (33)—(39).

4.2. Two stage SDB tensegrity structures

Another example of a class of tensegrity structures for which the prestressability conditions have ana-
Iytical solutions is that of two stage SDB tensegrity structures.
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A two stage SDB tensegrity structure can be obtained by removing the vertical tendons from a two stage
SVDB one. In the same way as for the SD type, we ascertain that two stage SDB tensegrity structures can
yield symmetrical prestressable configurations for which the saddle and diagonal tendon tensions are re-
spectively equal and that the necessary condition for this to happen is given by Eq. (36) (which is equivalent
to TV = 0)

In Sultan (1999) it has been proved that all of the symmetrical prestressable configurations for which the
saddle, diagonal, and boundary tendon tensions are respectively equal of two stage SDB tensegrity
structures are limit cases of the symmetrical prestressable configurations for which the saddle, vertical,
diagonal, and boundary tendon tensions are respectively equal of two stage SVDB tensegrity structures.
The necessary formulas (describing the equilibrium solutions and the state of stress) are obtained from the
ones corresponding to the two stage SVDB type by enforcing the condition that the tensions in the vertical
tendons are 0.

5. Two stage SVDT tensegrity structures

The next example of a class of tensegrity structures for which analytical solutions of the prestressability
conditions have been found is that of two stage SVDT tensegrity structures.

A two stage SVDT tensegrity structure is obtained from a SVD one if we replace the top rigid body with
tendons connecting the nodal points labeled as By;, B,;, and B3;. A SVDT structure is composed of six bars
and 21 tendons. We shall use the same notation as for the two stage SVD type (e.g. tendons B;;4,, will be
called saddle tendons, 4,,B;; and A,B;, vertical tendons, and 4,4, and B; B, diagonal tendons); the
tendons which replace the top rigid body — BB, B2y B3y, B3y By — will be called top tendons. The tendons
are labeled as follows:

|l =Ands, 2=A4uB3, 3=A4n4n, 4=A4uBn, S=A434n, 6=43By, 7=AnBy,
8 =ApBi, 9=A4nBsy, 10=A4»nBy, 11 =438y, 12=A43»B3, 13 =A43By,

14 = BB, 15=A1Byn, 16=ByBy, 17=A4nByn, 18 =B3By, 19=B;Bn,

20 = By»B3y, 21 = BypBys,.

We make the same modeling assumptions as for the two stage SVD tensegrity structures and we define the
inertial reference frame in the same way as the one used for the analysis of two stage SVD tensegrity
structures: it is a dextral orthonormal set of vectors, b, b, b3, with origin at the geometric center of the base
triangle Ay Ay A3, axis 153 is orthogonal to A;;4,43,, pointing upward, while by is parallel to 4,43,
pointing toward 43,.

The independent generalized coordinates used to describe the configuration of this system with respect to
the inertial reference frame are the Cartesian coordinates, x;, V2, zj», of the mass center of bar i2,i = 1,2, 3,
with respect to the inertial reference frame, and the azimuth o;; and the declination J,;, which characterize
the orientation of bar ij, i = 1,2, 3, j = 1,2 with respect to the inertial frame (these angles are defined in the
same way as the declination and azimuth used for two stage SVD tensegrity structures). The number of
independent generalized coordinates is N = 21 and the vector of generalized coordinates is:

q = [511 o1 021 Oa1 031 031 X2 Yi2 zZi2 012 02 X2 Y2 Zxp 02 0o X3 V32 Z32 03 0632]T~ (51)
5.1. Symmetrical prestressable configurations
As for the SVD and SVDB types the inertial Cartesian coordinates of the nodal points, the lengths of the

tendons /;(g), j=1,...,21, and the elements of the equilibrium matrix 4(q), 4; = 0l;/0q;, i =1,...,21,
j=1,...,21, can be derived using symbolic computation (Maple).
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For two stage SVDT tensegrity structures the prestressability conditions are
A(@)T=0 and T;>0 forj=1,...,21, (52)

where A(g) is a 21 x 21 matrix.

As for two stage SVD and SVDB two stage tensegrity structures, we shall consider the symmetrical
prestressable configurations class. The generalized coordinates corresponding to a symmetrical configu-
ration can be easily expressed in terms of «, J, and 4, (o, J, i are defined in the same way as for two stage
SVD and SVDB tensegrity structures). These generalized coordinates are given by

47 21

o = 0 = o, O = 03 = o+ —, 053120612:054-?,
l . 3 . . b
X2 =g sin (6) cos (o) +\/T—Z sin (9) sin (o) — X

b V3. I . . 3

Yo = m — Tlsm(é) cos (o) +Z sin () sin (o), Zpp = 51C05(5) —h,
—2 L in)cos(a) = Lin()sin), = lcos(3) (53)

x22—2 2 1) y22_2\/§ 2 ? 22_2 ’
X3 :4—1‘ sin (0) cos (o) — \/Tgl sin (9) sin (x),

I . : V3
Y=g sin () sin (o) +Tl sin (6) cos (o) — ek
za=2lcos()—h  0y=0, i=123 j=12.

2

At a symmetrical configuration all saddle, vertical, and diagonal tendons have the same lengths, respec-
tively, given by the same formulas (13)—(15) as for the SVD type. The top tendons have the same length, b.

As for the SVD and SVDB types, in a symmetrical prestressable configuration, « and J are restricted to
a € {[0,27) — £} and 0 € (0,3%).

The prestressability conditions, A(a,6,h)T =0, j = 1,...,21, have been numerically investigated as for
the SVD and SVDB types as follows. For fixed /, b, «, d the necessary prestressability condition,
det(A4(«, d,k)) = 0, has been solved for i and the kernel of the corresponding matrix A(a, d, ) has been
computed by solving A(a, 5, h)T = 0 for T. We ascertained that the prestressability conditions have atmost
one solution for / such that 7; > O for j =1,...,21, and that, in this case, the tensions in the saddle,
vertical, diagonal, and top tendons are respectively equal.Consequently we impose the condition that the
tensions in the saddle, vertical, diagonal, and top tendons are respectively equal to Ts, Ty, Tp, and Tt such
that the vector of tensions has the following structure:

T=[To WTp Tv Ip Ty Ts Ts Ts Ts Ts Ts Tv Tpo Tv Tpo Tv Tp Tr Tt TT]T. (54)
If we substitute Egs. (53) and (54) into Eq. (52) we obtain the reduced prestressability conditions
ArTr:07 TS>07 TV>03 TD>07 TT>O7 (55)

where A, is a 21 x 4 matrix, and 7, = [Ts Tv Tp TT]T.
Further investigations showed that the only rows of A, which might be independent are 1, 2, 3, and 4.
The prestressability conditions corresponding to these rows of 4, yield

AT, = O, Ts > 0, Tv>0, Tp >0, Tr>0, (56)

where the structure of A, is
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* % x 0

A = * % x 0 (57)
* % % %
* 0 x 0

with the nonzero elements of 4. given by

1 . . b T b n
A, = 3 (lcos (0) sin(0) — 2h sin(J) — 7 cos () cos (oc — 5))’ A, = -7 cos(d)cos (oc - g),
) . . b . b sin (d)cos (o + %)
Aoy = = | 21sin(d)cos (6) — hsin(6) — —= sin(a)cos(9) |, Aoy = — =25
o= (215in(@)cos @) hsin(d) - T sin(a)eos(d)). =
Ib sin (0) cos (. + %) 1b sin (0) cos (o)
A = — ; Ay = —————F—,
4 V3D
_ 2lsin(0)cos(x—5) —b 1 . .
Ay = 7S , A = W(Zﬂl sin () sin (o) — 3b),
b+ 2Isin(5)cos(x +3) 3
Ae33__ 2D ’ Ae34__§7
2h 2(Icos(d) —h
Ae41:_§a Ae43:$~

We next give another important result of this paper.

Theorem 3. For o € {[0,2n) — £} and 6 € (0,5). the set of symmetrical prestressable configurations of two
stage SVDT tensegrity structures for which the tensions in the saddle, vertical, diagonal, and top tendons are
respectively equal is identical with the set of symmetrical prestressable configurations of two stage SVD
tensegrity structures for which the tensions in the saddle, vertical, and diagonal tendons are respectively equal.

Proof. See Appendix C. [

The forces in all bars are equal and can be computed using Egs. (33)—(35).
5.2. Two stage SDT tensegrity structures

The last example of a class of tensegrity structures for which the prestressability conditions can be
analytically solved is that of two stage SDT tensegrity structures.

A two stage SDT tensegrity structure can be obtained by removing the vertical tendons from a two stage
SVDT one. In the same way as for the SD type, we ascertain that two stage SDT tensegrity structures can
yield symmetrical prestressable configurations for which the saddle, diagonal, and top tendon tensions are
respectively equal and that the necessary condition for this to happen is given by Eq. (36) (which is
equivalent to 7y = 0).

The symmetrical prestressable configurations for which the saddle, diagonal, and top tendon tensions are
respectively equal of two stage SDT tensegrity structures are limit cases of the symmetrical prestressable
configurations for which the saddle, vertical, diagonal, and boundary tendon tensions are respectively equal
of two stage SVDT tensegrity structures, all the necessary formulas (describing the equilibrium solutions
and the state of stress) being obtained from the ones corresponding to the two stage SVDT type by en-
forcing the condition that the tensions in the vertical tendons are 0.
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6. Conclusions

General prestressability conditions for tensegrity structures have been derived through the application of
the principle of virtual work. These conditions are expressed as a set of nonlinear equations and in-
equalities.

The prestressability conditions have been investigated for certain tensegrity structures. For particular
classes of prestressable configurations analytical solutions of the prestressability conditions have been
found. The state of stress of the structures in these prestressable configurations has been shown to depend
only on one scalar parameter, the pretension coefficient. The set of these prestressable configurations can be
represented by a surface or by a curve in a certain three dimensional space.

Appendix A. Proof of Theorem 1

We shall first prove that, for given « and 9, a two stage SVD tensegrity structure might yield at most one
symmetrical prestressable configuration for which the tensions in the saddle, vertical, and diagonal tendons
are respectively equal and that for this to happen conditions (23) are necessary.

We have seen that necessary and sufficient conditions for the two stage SVD tensegrity structure to yield
symmetrical prestressable configurations for which the tensions in the saddle, vertical, and diagonal ten-
dons are respectively equal are given by Eq. (21). Consider the third equation in Eq. (21):

h h—1cos(d)

Is-+Tp

5 5 =0. (A.1)

Because 0 < 0 <3, § >0, and D > 0, conditions 7s > 0 and 7p > 0 can be simultaneously satisfied only
if

0 < h < lcos(o). (A.2)

Since A, is a square matrix, conditions (21) require that det(4.) = 0. This reduces to

b
h2u+h<—— lu) cos (0 +l<lu—
7 (9)
where u = sin (6)cos (« +%).

Consider now Eq. (A.3) and condition 0 < & < /cos(d). For « =% Eq. (A.3) is linear in /4 and has only
one solution, /# = [ cos(d)/2, which satisfies 0 < & < [ cos(d). Assume that o # Z. Then Eq. (A.3) is qua-
dratic in /& and, since 0 < 6 < 7, has real solutions for / if and only if

bZ
3 3P > 0. (A4)

Consider the following solution for % of Eq. (A.3):

. cos(d) b? ,, b
h=h,= > <1L14—\/3—3lu—\/§ . (A.5)

1“’2&| < leos @) which, for h = h, becomes

%) cos?(8) =0, (A.3)

Condition 0 < # < Icos(d) is equivalent to |7 —

/b? b
N ¥ 1 B
’ 3 V3

< lsin(é)‘cos (a+%>‘ (A.6)
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After raising Eq. (A.6) to the second power, and after several algebraic manipulations, we get the equivalent
condition

b b2 b?
o 322 — 2772, A.
7 3Pu% > — 3 I‘u (A7)

Because of Eq. (A.4), the right-hand side of this inequality is always positive. After raising Eq. (A.4) to the
second power and performing several algebraic manipulations, we get the equivalent condition

lsin(é)‘cos( +— )‘ 2\/_

which is stronger than Eq. (A.4) (if Eq. (A.8) is satisfied then Eq. (A.4) is also satisfied).

The other solution for 4 of Eq. (A.3), let it be called %_, does not satisfy 0 < 4 < Icos(d). This can be
easily proved in the same manner as it has been proved that 0 < 4, < /cos(9).

Thus for given « € [0,2n) and ¢ € (0,5) Eq. (A.3) might have at most one solution satisfying Eq. (A.2):

h:{cm (; +\/m_%) if o2, (A.9)

Icos (0) 1 —I
— if oo =%

(A.8)

The necessary and sufficient condition for this solution to satisfy 0 < & < /cos(J) is

. v b

lsm(é)‘cos (oc+g)‘ < 3 (A.10)

with

T b

h=0 for /sin(o - =—= A.ll
or [ sin( )cos(oc+6) e ( )

and

T b

= 0) for Isin(6 —)=——. A.12
h=1lcos(d) for Isin( )cos(oc+6> 23 ( )

Consider a triple («,0,4) which satisfies Eq. (A.2) and Eq. (A.3). Then, the kernel of A, is one di-
mensional. Indeed, the rank of the matrix composed of the first two columns of A, is 2 because

0 <h<lcos(é) and 0<5<g. (A.13)

The tensions in the saddle, vertical, and diagonal tendons can then be expressed as
T. = P (A.14)

where P is an arbitrary scalar called the pretension coefficient and Tj is a normalized basis of Ker(4,) given

by

75 Iy Tp)

I = [Ty Ty, Tp. | =——S> -V DI
o =T Tov Tool = G e 7 1)

(A.15)

where

. g ( )((10‘);((5)_1)sin(oc—g)—cosw)>TB if o #3%, (A.16)
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S ( lcos(9) r : s
ng{D( - 1)TD if 0 £, A1)

T _
TD if o = g,

T =1. (A.18)

The normalization has been performed such that the Euclidean norm of the vector of all 18 tensions is one
for P = 1. These formulas are valid if and only if Eq. (A.10) holds and /% is given by Eq. (A.9).

We now investigate the condition that the tensions are positive. Condition 7p > 0, and 7p = PT;, where
Ty, > 0 yields P > 0. Now, taking into account that 7, > 0, S > 0, D > 0, and Eqgs. (A.1) and (A.2) we get
that 75 > 0. Consider condition 7y > 0, which, since P > 0, is equivalent to 7y > 0. Assume that o # %.
Taking into account Eq. (A.9), V' > 0, D > 0, and the formula for T3, after several algebraic manipulations,
condition 7y, > 0 can be shown to be equivalent to

\/b; - 3lzsin2(5)cosz(a +g) sin (oc +g) < % sin (oc +g) — V/31sin (8) cos (oc+%). (A.19)

Assume first that sin (o +%) < 0. Then, the right-hand side of Eq. (A.19) is negative. After raising Eq.
(A.19) to the second power and after performing several algebraic manipulations, we obtain the equivalent
condition 3/sin () < 2b sin (« + ), which cannot hold since 0 < ¢ < 3.

Assume now that sin (x4 %) > 0. Then the right-hand side of Eq. (A.19) has to be positive, a condition
which leads to

sin(oc+z)> 1+ b’ — b
6 3612sin*(5)  6/sin(d)

(A.20)

After raising Eq. (A.19) to the second power and performing several algebraic manipulations we get the
following condition:

31sin(8) > 2bsin (o +Z). (A.21)
If « =%, Ty > 0 leads to 3/sin(6) > 2b which is a particular case of Eq. (A.21).

Thus we have proved that 7§, > 0 is equivalent to Egs. (A.20) and (A.21). In addition we have of course
to consider condition (A.10). Since Eq. (A.20) implies that sin(x + %) > 0, Eq. (A.10) becomes

7 b?
sin(o+—) >4/l ————5—. A.22
(++5) 12725in(3) (A.22)
We ascertain that for Egs. (A.20) and (A.21) to simultaneously hold we must have
31sin () > V/2b (A.23)

which implies

b?
A24
3612 sin®( 6/ sin \/ 12l2 sin’ ( )

If we now consider Egs. (A.22) and (A.24) we get

»?
1+ - < sm A.25
\ 36/2sin*(6) 6/ sin \/ 12[2 sin’( ( )

showing that if Eqgs. (A.21)-(A.23) hold then Eq. (A.20) is satisfied.
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Thus, so far we have proved that for symmetrical prestressable configurations for which the tensions in
the saddle, vertical, and diagonal tendons are respectively equal, to exist, conditions (A.21)-(A.23) are
necessary (for « € {[0,2n) — £} and 6 € (0,5)). These conditions imply that « must satisfy « € (%,5) This can
be easily proved as follows. Assume first that v/2b < 3/sin () < 2b. In order for the inequalities (A.21) and
(A.22) to simultaneously hold we must have

> .
L AL sin (9) (A.26)
12/2sin°(6) 2b
which yields 3/ sin () > /3b. Taking into account this condition and Eq. (A.22) we get
V3 b? b
— < |l——————<sinla+=). A.27
2 1225in’(3) (= 6) (A.27)

If 3/sin(5) > 2b, then Eqgs. (A.21) and (A.23) are satisfied while Eq. (A.22) yields sin (x4 %) > @ Thus
sin (o + %) > ‘/75, which yields o« € (%,5).

We shall now prove that conditions (23) are also sufficient. The necessary and sufficient conditions for a
two stage SVD tensegrity structure to yield symmetrical prestressable configurations for which the tensions
in the saddle, vertical, and diagonal tendons are respectively equal, are given by Eq. (21). Hence we have to
prove that if Eq. (23) holds then Eq. (21) have at least one solution. Let (o, §) be a pair which satisfies Eq.
(23) and assume that / is given by Eq. (24). As we have seen in the proof of the first part of the theorem, if «
and o satisfy Eq. (23) and / is given by Eq. (24), then 4 is real valued (actually 0 < 4 < Icos(0)) and
det(4.) = 0. Thus 4.7; = 0 has nonzero solutions for 7. In this case, since 0 < é <5 and 0 < h < Icos (),
the rank of A4, is 2 and the nonzero solutions for 7} are given by Egs. (26)—(30), as we have already seen. If
we now choose any P > 0, then all we have to prove is that Eq. (23) implies that 7§ > 0, 7y, > 0, and 7 > 0.
It is easy to see that 7) =1 > 0, and 75 > 0. We have also seen in the first part of the proof of the theorem
that 7y, > 0 is equivalent to Eqs. (A.21)-(A.23). We shall now prove that Eq. (23) implies Eqgs. (A.21)-
(A.23). Indeed, from Eq. (23) we have ¢ < o < %, from which we get 3/ sin(5) > 2b sin (« + §) > V3b > \/2b
which proves that Eq. (A.23) holds. Also, since f <o <, the third condition from Eq. (23),
[sin(0)|cos(x+F)| < zhﬁ’ implies Eq. (A.22). Lastly, Eq. (A.21) implies itself.

This proves that conditions (23) are also sufficient for the two stage tensegrity SVD tensegrity structures
to yield symmetrical prestressable configurations for which the tensions in the saddle, vertical, and diagonal
tendons are respectively equal and concludes the proof of the theorem.

Appendix B. Proof of Theorem 2

The set of symmetrical prestressable configurations of two stage SVDB tensegrity structures for which
the tensions in the saddle, vertical, diagonal, and boundary tendons are respectively equal is characterized
by Eq. (48). The set of symmetrical prestressable configurations of two stage SVD tensegrity structures for
which the tensions in the saddle, vertical, and diagonal tendons are respectively equal is characterized by
Eq. (21). We shall prove that condition (48) yield the same solution for the overlap in terms of « and 6 as
Eq. (21) and that this solution exists if and only if Eq. (23) hold.

The third equation in Eq. (48) yields

h h —Icos(d)

Is-+1Tp

5 =0 (B.1)

showing that 75 and Tp can simultaneously be positive (as required) if and only if 0 < & < /cos(d) (since
0<0<3,8>0,and D > 0).
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Prestressability implies that 4.7, = 0 in Eq. (48) must have nonzero solutions for 7%, which leads to the
condition that the determinant of A4, is 0, yielding

hu+ h (jg - lu) cos () + l<lu - 23§> cos?(8) = 0, (B.2)

where u = sin(d) cos(«x + %). This equation is exactly the same equation which characterizes the symmet-
rical prestressable configurations for which the saddle, vertical, and diagonal tendon tensions are respec-
tively equal of two stage SVD tensegrity structures. The equation has to be solved subject to the same
conditions (0 < & < [cos(d),0 < d < %), thus the solution for / is the same:

po S (o E 3R ) i, (B.3)

lcos(é) 1 4
= if o=%.

This solution satisfies 0 < 7 < /cos(6) if and only if / sin(6)|cos (x + )| < %

The rank of 4. at such a configuration is investigated next. The determinant of the matrix formed by the
intersection of rows 1, 2, 3, and columns 2, 3, 4 of A, is equal to % (h — /cos(d))sin (d)cos (a +Z). It is
easily seen that, since 0 < & < Icos(d) and 0 < 6 <3, this determlndnt can be zero for cos(x+%) =0,
yielding o = ¥ or o« = *%. However the determinant of the matrix formed by the intersection of rows 2 3,4
and columns 2,3, 4 ofA is equal to 8‘[(}1 Icos(8))(v31sin (o — %) sin () cos (o) — beos (8 — Z)) cos (d),
which is clearly nonzero for « =% and for o = 4” (since 0 < h < lcos(é) and 0 < 6 < 7%). These facts show

that at such a configuration the rank of 4. is 3 thus the kernel of A, is one dimensional, leading to
T, = TL,P. (B.4)

Here P is an arbitrary positive scalar called the pretension coefficient and T, is a normalized basis of the
kernel of 4., given by

[Tr Tr Tr Tr]
Ty = [Tog Toy Top Toy) = AR Al (B.5)
where

14 1 lcos(d) : oy " . x

T\r/ — D \/§cos (w—%) (( h l) s (O( 6) COs (O()> TD lf o 7é 39 (B6)
B (3sin(3) — 1) ifa=1,
S ( lcos(9) r . n

ng{D( M0 1) T i A, )
15 if o =1%,
T 312 sin (0) cos (8)+6bh cos (2—5)—61h sin )—2v/3bl cos (3) sin () . .

T]; — 6% V3hcos ( ot+6) if o 7& 3 (BS)
% 2b2—91b sin (;5)+912 sin®(9) o= §7

5 =1. (B.9)

The normalization has been performed such that the Euclidean norm of the vector of all 24 tensions is one
for P = 1. We ascertain that 73, and T3 are given by the same formulas like their counterparts for two stage
SVD tensegrity structures yielding symmetrical prestressable configurations for which the tensions in the
saddle, vertical, and diagonal tendons are respectively equal.
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We now investigate the conditions that the tensions are positive. We remark that the expressions of Tg,
Ty, and T} are the same as the ones we obtained for the symmetrical prestressable configurations of two
stage SVD tensegrity structures for which the tensions in the saddle, vertical, and diagonal tendons are
respectively equal. We have already seen that the solution for the overlap is also the same. Thus, if we
consider conditions 75 > 0, Ty > 0, and Tp > 0 for the SVDB type we obtain the same conclusions as for
the SVD type, namely that these conditions hold if and only if P > 0 and Eq. (23) hold. The proof is
identical with the proof of Theorem 1. However, in addition to these conditions, for the SVDB type we
have to investigate 75 > 0. We shall prove that if Eq. (23) hold then 73 > 0.

Consider first that « # %. Since & > 0, D > 0, T, > 0, condition 73 > 0 is equivalent to

312 sin(0) cos (8) + 6bhcos (o — Z) — 61h sin(5) — 2v/3bl cos (8) sin (a)

S+ T > 0. (B.10)

Substituting 4 with its value for o # 3,

2
h— 002555) <lu + ,/%— 322 — \%) where u = sin (8) cos (o« + %), (B.11)
and taking into account that 0 < 6 < 7, after some algebraic manipulations, condition (B.10) becomes
in()c0s (a4 ™) + ( sin(s) — 2 sin (24" _\/_1_2-2 (g T
sin (J) cos (oc+6)+<sm(5) lsm(oc+6)> <1 1 9b2 sin”(J) cos <u+6> >0. (B.12)

Multiplication of Eq. (B.12) with 1 + \/ 1 - 9;}—? sin2(5) cos?(a + %) and further algebraic manipulations lead
to

7 ., T ? . ) b . 7
—\/1 - 9? sin (5)cosz(oc + E) <1+ 9ﬁ sin (9) (sm(é) — 7 sin (oz +E))' (B.13)
The right-hand side of Eq. (B.13) is a quadratic form in x = 3’+“(‘)) Let it be called R(x):
R(x) =x* = 3xsin (¢ + %) + 1. (B.14)

The sign of R(x) is analyzed next. Consider the discriminant, 4, of the quadratic equation in x, R(x) = 0:
A =9sin*(a + %) — 4. Because £ < « < %, we have 4 > 0 and R(x) = 0 has two different roots. The sign of
R(x) is characterized as follows:

e R(x)<O0if

351n(oc+g)—\/Z<x<3sm(oc+g)+\/Z' (B.15)
2 2
® R(x) > 0 otherwise.
We now take into account the fact that, from Eq. (23),
in (6
x:y%n()> 2sin (¢ +%) and sin(x+Z) >\/7§.
It can easily be seen that
3si ) — VA 3si z A
Sm(Hzé) \/_<Zsin<oc+g) < Sm(“?)hr. (B.16)
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Thus R(x) > 0 for

3si z A
ie sm(oc+26)+\/— (B.17)

and R(x) <0 for

3sin(x+Z) + V4
3 .
Now, if R(x) > 0 the inequality (B.13) — and thus 7 > 0 — is satisfied.

In the second case (R(x) < 0), after raising to the second power the inequality (B.13) and performing
some algebraic manipulations, we get the equivalent condition

Isin(0) (Isin(d) | o\ Isin(d) ., n Isin() . . n
0>9 5 < 5 —sm(oc+6> —T31n<a+g)+3 b —2s1n(oc+g) (B.19)

25in<a+g) <x< (B.18)

which, after introducing x = 3/ sin (9)/b, can be written as

0> (x—25in<a+g))<x2—4xsin<oc+g)+3). (B.20)
Since sin (o + %) > %5 we have 4sin’ (o + %) — 3 > 0. Then the above inequality becomes

0> (x—2sin(x+%))(x —x)(x — x2) (B.21)
with:

x1:2sin(a+g) —\/4sin2(oc+g)—3, x2:2sin(a+g)+\/4sin2(oc+g)—3. (B.22)
Since x > x; (as it can be easily seen) and x — 2sin (« + %) > 0 the above condition reduces to:

x < X3. (B.23)

Now, recall that

3sin (o0 +%) + V4
3 .
Analyzing the position of x, with respect to (3sin (x4 %) + V/4)/2 we reach the following conclusions.

3sin (o +Z) + VA

R(x)<0 if 2sin(ox+2) <x<

. 2
. If sin (o +%) > —= then < xy thus x —x, < 0 and T > 0.

V3 2
. If£< sin(oc+§)<iand251n(ac+§)<x<xz then T > 0.
2 Vs
V3. . 2 3sin(o+Z) + VA
[ If 7< SIH(OC—Fg)gﬁandngxg 26 then ngo
Next we take into account the third inequality in Eq. (23),
i b
i b - B.24
ls1n(5)’cos(oc+6)‘<2\/§ ( )

We shall prove that the conditions leading to 73 <0,
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3 . 2 3sin (o +Z) + 4
\/7_< sm(ac—i—%)éE and x, <x< (a 26) \/_, (B.25)
and / sin ()| cos (o 4+ §)| < W cannot simultaneously hold. Indeed f < sin(a+%) < % and ¢ < o < % yield
E<ag arcsm(}) —Z. In this case /sin (d)|cos (a4 F)| < 2\[ is equlvalent to
3
x< f . (B.26)

24/1 — sin’(o + )
But, on the other hand

x2:2sin(oc+g)+\/4sin2(fx+§)—3<x. (B.27)

We can prove that, for ‘f < sin(x+%) < f, we have

V3
24/1 — sin’(x + %)

< X3. (B28)

Indeed, this inequality is equivalent to

V3 <24/1 - sinz(cx—i-%) (25in(oc—|—§) + \/4sin2(a+§) - 3). (B.29)

The right-hand side of this mequahty is a function of s = sin(x+%), f(s) = 2V 1 — s?(2s + V4s? — 3),
which is real valued only for 3 <s< ﬂ Its range is (\/§ 2] as it can be easily checked by computing the
derivative of f(s) and ascertalmng that it is strictly positive for ‘/75 <s < Ls and zero for s = 15

But Egs. (B.26) and (B.28) yield x < x, which contradicts Eq. (B.27). Thus /sin (d)|cos (o + )| < Z”W and
Ty <0 are not compatible.

This proves that Tz > 0 if conditions (23) hold.

For o« = § we can go through the same steps of the above proof using the values of 2 and T for « = § and

reach the conclusion that 73 > 0. The proof is simpler and is not given here.

Appendix C. Proof of Theorem 3

The proof is similar with the one of Theorem 2. We shall prove that conditions (56), which characterize
the set of symmetrical prestressable configurations of two stage SVDT tensegrity structures for which the
tensions in the saddle, vertical, diagonal, and top tendons are respectively equal, yield the same solution for
h in terms of o and § as Eq. (21) and that this solution exists if and only if Eq. (23) hold.

The fourth equation in Eq. (56) yields

h h —Icos(d)
Lgth—7p
showing that 75 and T can simultaneously be positive if and only if 0 < 4 < Icos(9) (since S > 0, D > 0,

and 0 <o < 7).

On the other hand since 4.7; = 0 must have nonzero solutions for 7} and A, is a square matrix we get the

condition that the determinant of A, is 0, yielding

=0 (C.1)

hu+ h(% - lu> cos (8) + l(lu - %) cos?(8) = 0, (C.2)
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where u = sin(J)cos(x +%). This equation is the same as the one which characterizes the symmetrical
prestressable configurations for which the saddle, vertical, and diagonal tendon tensions are respectively
equal of two stage SVD tensegrity structures and it has to be solved subject to the same conditions
(0 < h < lcos(9),0 <6 <%). Hence the solution for / is the same:

K (ERVCEER R S R .

[ cos (9) : _n
— if oo =7%.

This solution satisfies 0 < & < /cos(9) if and only if /sin (9)|cos (o + )| < ;5.

The rank of 4, at such a configuration is investigated next. The determinant of the matrix formed by the
intersection of rows 1, 3, 4, and columns 2, 3, 4 of A, is [3/b(h — [cos())cos(6)cos (5 — «)]/VD, and the
determinant of the matrix formed by the intersection of rows 2, 3, 4, and columns 2, 3, 4 of A4, is equal to
[31b(h — [ cos(0) sin (9) sin (5 — «)]/VD. Since 0 < h < [cos(d) and 0 < ¢ < 5 these two determinants cannot
be simultaneously 0, thus the rank of 4. is 3. Its kernel is given by

7. = T,P. (C4)

Here P is an arbitrary positive scalar called the pretension coefficient and 7} is a normalized basis of the
kernel of A., given by

s Ty Tp Tl

T = [Tog Toy Top To] = , (C.5)
S A R ]
where
14 1 lcos(d) . o " . z
- (Bt (5 smtey ooty 025, »
7> (35 sin(8) — 1) if o=z,
. s (m;(o) _ 1)Tlg if o #1, )
15 if 0=1%,
5 312 sin (8) cos () +6bh cos (2—%)—6/h sin (6)—2v/3bl cos (8) sin (x) £ n
r 6D V3h cos (a+2) 1o 7& 30
Ir= Tf, 262—91b sin (8)+91% sin?(9) ¢ (C3)
% : b » lf o= %a
Ip=1. (C.9)

The normalization has been performed such that the Euclidean norm of the vector of all 21 tensions is one
for P =1.

We remark that 4, T, Ty, Tj, are given by the same formulas as for the SVDB type, and that 77 is given
by the same formula as 7} (for the same SVDB type). Hence conditions 7§ > 0, 7y, > 0, 7, > 0, and 7} > 0
lead to the same conditions as for the SVDB type, which as shown in Theorem 2 are, at their turn, the same
as for the SVD type (given by Eq. (23) with the overlap given by Eq. (24)).

This proves that the set of two stage SVDT tensegrity structures which yield symmetrical prestressable
configurations for which the tensions in the saddle, vertical, diagonal, and top tendons are respectively
equal is identical with the set of two stage SVDB tensegrity structures which yield symmetrical prestressable
configurations for which the tensions in the saddle, vertical, diagonal, and boundary tendons are respec-
tively equal. By Theorem 2 we have that this set is also identical with the set of symmetrical prestressable
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configurations for which the tensions in the saddle, vertical, and diagonal tendons are respectively equal
yielded by two stage SVD tensegrity structures.

References

Coughlin, M.F., Stamenovic, D., 1997. A tensegrity structure with buckling compression elements: application to cell mechanics.
ASME J. Appl. Mech. 64, 480-486.

Fuller, R.B., 1975. Synergetics, explorations in the geometry of thinking. Collier Macmillan, London.

Furuya, H., 1992. Concept of deployable tensegrity structures in space application. Int. J. Space Struct. 7 (2), 143-151.

Hanaor, A., 1988. Prestressed pin-jointed structures — flexibility analysis and prestress design. Int. J. Solids Struct. 28 (6), 757-769.

Hanaor, A., 1992. Aspects of design of double layer tensegrity domes. Int. J. Space Struct. 7 (2), 101-113.

Ingber, D.E., 1993. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104, 613-627.

Ingber, D.E., 1998. The architecture of life. Sci. Am. 248 (1), 48-58.

Kenner, H., 1976. Geodesic math and how to use it. University of California Press, Berkeley.

Motro, R., 1992. Tensegrity systems: the state of the art. Int. J. Space Struct. 7 (2), 75-83.

Motro, R., Najari, S., Jouanna, P., 1986. Static and dynamic analysis of tensegrity systems. Proceedings of the International
Symposium on Shell and Spatial Structures: Computational Aspects, Springer, New York, pp. 270-279.

Pellegrino, S., 1990. Analysis of prestressed mechanisms. Int. J. Solids Struct. 26 (12), 1329-1350.

Pellegrino, S., Calladine, C.R., 1986. Matrix analysis of statically and kinematically indetermined frameworks. Int. J. Solids Struct. 22
(4), 409-428.

Pugh, A., 1976. An introduction to tensegrity. University of California Press, Berkeley.

Skelton, R.E., Sultan, C., 1997. Controllable tensegrity, a new class of smart structures. Proceedings of the SPIE 4th Symposium on
Smart Structures and Materials 3039, pp. 166-177.

Snelson, K., 1996. Snelson on the tensegrity invention. Int. J. Space Struct. 11 (1/2), 43-48.

Stamenovic, D., Fredberg, J.J., Wang, N., Butler, J.P., Ingber, D.E., 1996. A microstructural approach to cytoskeletal mechanics
based on tensegrity. J. Theor. Biol. 181, 125-136.

Sultan, C., 1999. Modeling, design, and control of tensegrity structures with applications. Ph.D. Dissertation, Purdue University,
School of Aeronautics and Astronautics, 200 p.

Sultan, C., Skelton, R.E., 1997. Integrated design of controllable tensegrity structures. Proceedings of the ASME Congress and
Exposition 54, pp. 27-37.

Sultan, C., Skelton, R.E., 1998. Force and torque smart tensegrity sensor. Proceedings of the SPIE fifth Symposium on Smart
Structures and Materials 3323, pp. 357-368.

Sultan, C., Corless, M., Skelton, R.E., 1999. Peak to peak control of an adaptive tensegrity space telescope. Proceedings of the SPIE
6th Symposium on Smart Structures and Materials 3323, pp. 190-201.

Sultan, C., Corless, M., Skelton, R.E., 2000. A tensegrity flight simulator. J. Guidance Control Dynamics, in press.

Tarnai, T., 1980. Simultaneous static and kinematic indeterminacy of space trusses with cyclic symmetry. Int. J. Solids Struct. 16 (12),
347-359.

Wang, B.B., Liu, X.L., 1996. Integral tension research in double layer tensegrity grids. Int. J. Space Struct. 11 (4), 349-362.



